💬

🔥From LLMs to AI Agents: Complete Practical Path

Published by KGP Talkie on

🚀 Build Real AI Agents in 2026 (Not Just Demos)

From RAG → Multi-Agent Systems → LangGraph → OpenAI Agents → LLM Fine-tuning

👉 This is a complete Agentic AI journey.

🤖 1. 2026 Deep Agent – Multi-Agent RAG with Gemini & LangChain

Build advanced, production-ready multi-agent AI systems.

https://kgptalkie.com/deep-agent

What you’ll learn:

  • LangChain v1 AI Agents
  • Multi-Agent RAG architectures
  • Google Gemini 3 integration
  • Multimodal RAG (PDFs, tables, images)
  • Qdrant vector DB, hybrid search
  • MCP tools, memory & cost optimization
  • Docker-based deployments

🎯 Best for: Advanced GenAI & RAG developers
💡 Outcome: Enterprise-grade multi-agent AI systems

🔐 2. Agentic AI – Private Agentic RAG with LangGraph & Ollama

Build private, offline, secure RAG systems.

https://kgptalkie.com/agentic-rag

What you’ll learn:

  • LangGraph v1 from scratch
  • Private & local RAG using Ollama
  • Corrective RAG (CRAG), Self-RAG, Adaptive RAG
  • Page-level PDF ingestion (Docling)
  • Metadata filtering & re-ranking
  • MySQL-based AI agents

🎯 Best for: Privacy-focused & enterprise AI use cases
💡 Outcome: Fully private Agentic RAG systems

🧠 3. Master LangChain v1 & Ollama – Chatbots, RAG & AI Agents

Your foundation course for LangChain v1.

https://www.udemy.com/course/ollama-and-langchain/?couponCode=26JAN26

What you’ll learn:

  • LangChain v1 core concepts
  • Ollama with local LLMs
  • Qwen3, Gemma3, DeepSeek, LLaMA
  • Build chatbots with memory & streaming
  • RAG pipelines
  • Deploy AI apps on AWS
  • Text-to-MySQL agents

🎯 Best for: Beginners to intermediate GenAI learners
💡 Outcome: Strong LangChain + RAG fundamentals

🕸️ 4. Master LangGraph v1 & Ollama – Build GenAI Agents

Design complex agent workflows using graphs.

https://kgptalkie.com/langgraph

What you’ll learn:

  • LangGraph states, nodes & edges
  • Conditional routing & reducers
  • Nested graphs & orchestration
  • Tool-using agents (ReAct)
  • Local & cloud LLM agents
  • End-to-end GenAI agent systems

🎯 Best for: Developers moving from chains to agents
💡 Outcome: Scalable, controllable AI agents

🧩 5. Master OpenAI Agent Builder – Deploy Chatbots to Your Website

Build and deploy AI agents with low-code tools.

https://kgptalkie.com/agent-builder

What you’ll learn:

  • OpenAI Agent Builder (no-code / low-code)
  • ChatKit & MCP connectors
  • RAG-powered AI assistants
  • MySQL, AWS & RDS integrations
  • Production deployment with guardrails
  • Real business use cases (support, ecommerce)

🎯 Best for: Rapid AI product builders
💡 Outcome: Deployed AI assistants on websites

🧬 6. Fine-Tuning LLMs with Hugging Face Transformers

Train and fine-tune your own LLMs.

https://kgptalkie.com/fine-tuning-llm

What you’ll learn:

  • Transformers architecture
  • BERT, Phi-2, LLaMA variants
  • Dataset preparation & evaluation
  • Fine-tuning for classification & QA
  • Text summarization & inference
  • Model distillation techniques

🎯 Best for: NLP & model-level AI engineers
💡 Outcome: Custom fine-tuned LLMs

🔗 7. MCP Mastery – Build AI Apps with Claude, LangChain & Ollama

Learn Model Context Protocol (MCP) and build real AI apps that connect tools, data, and LLMs.

https://kgptalkie.com/mcp

What you’ll learn:

  • MCP fundamentals (servers & clients)
  • Build custom MCP servers in Python
  • Connect real-world tools, APIs & resources
  • Integrate MCP with Claude Desktop
  • Use MCP with LangChain v1 & LangGraph v1
  • Build RAG systems using vector databases
  • ChromaDB + Ollama integration
  • Secure, test & deploy production-ready MCP servers
  • Build Streamlit-based AI apps

🎯 Best for:
GenAI developers, LangChain/LangGraph users, AI engineers

💡 Outcome:
You’ll be able to build tool-connected AI apps using MCP — the same protocol used by modern AI agents.


0 Comments

Leave a Reply

Avatar placeholder