## How to Become a Successful Machine Learning Engineer

Machine learning is a rapidly growing field that offers a wide range of opportunities for those who have the right skills and qualifications. As a machine learning engineer, you will be responsible for designing and implementing machine learning models that can help organizations make data-driven decisions. If you’re interested in Read more…

## Feature Engineering Tutorial Series 6: Variable magnitude

Does the magnitude of the variable matter? In Linear Regression models, the scale of variables used to estimate the output matters. Linear models are of the type y = w x + b, where the regression coefficient w represents the expected change in y for a one unit change in x Read more…

## Feature Engineering Tutorial Series 5: Outliers

An outlier is a data point which is significantly different from the remaining data. “An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism.” [D. Hawkins. Identification of Outliers, Chapman and Hall , 1980.] Should Read more…

## Feature Engineering Tutorial Series 4: Linear Model Assumptions

Linear models make the following assumptions over the independent variables X, used to predict Y: There is a linear relationship between X and the outcome Y The independent variables X are normally distributed There is no or little co-linearity among the independent variables Homoscedasticity (homogeneity of variance) Examples of linear Read more…

## Feature Engineering Series Tutorial 3: Rare Labels

Labels that occur rarely Categorical variables are those whose values are selected from a group of categories, also called labels. Different labels appear in the dataset with different frequencies. Some categories appear more frequently in the dataset, whereas some other categories appear only in a few number of observations. For Read more…

## Feature Engineering Series Tutorial 2: Cardinality in Machine Learning

Cardinality refers to the number of possible values that a feature can assume. For example, the variable “US State” is one that has 50 possible values. The binary features, of course, could only assume one of two values (0 or 1). The values of a categorical variable are selected from Read more…

## Credit Card Fraud Detection using CNN

Classification using CNN It is important that credit card companies are able to recognize fraudulent credit card transactions so that customers are not charged for items that they did not purchase. In this project we are going to build a model using CNN which predicts if the transaction is genuine Read more…

## Text Generation using Tensorflow, Keras and LSTM

Automatic Text Generation Automatic text generation is the generation of natural language texts by computer. It has applications in automatic documentation systems, automatic letter writing, automatic report generation, etc. In this project, we are going to generate words given a set of input words. We are going to train the Read more…

## SpaCy – Introduction for NLP | Combining NLP Models and Custom rules

Combining NLP Models and Creation of Custom rules using SpaCy Objective: In this article, we are going to create some custom rules for our requirements and will add that to our pipeline like explanding named entities and identifying person’s organization name from a given text. For example: For example, the Read more…

## Bank Customer Satisfaction Prediction Using CNN and Feature Selection

Feature Selection and CNN In this project we are going to build a neural network to predict if a particular bank customer is satisfies or not. To do this we are going to use Convolutional Neural Networks. The dataset which we are going to use contains 370 features. We are going Read more…

## Star Rating Prediction

Star Rating Prediction of Amazon Products Reviews Objective In this notebook, we are going to predict the Ratings of Amazon products reviews by the help of given reviewText column. Natural Language Processing (NLP) is a sub-field of artificial intelligence that deals understanding and processing human language. In light of new Read more…

## Deep Learning with TensorFlow 2.0 Tutorial – Building Your First ANN with TensorFlow 2.0

Deep learning with Tensorflow # pip install tensorflow==2.0.0-rc0 # pip install tensorflow-gpu==2.0.0-rc0 Watch Full Lesson Here: Objective Our objective for this code is to build to an Artificial neural network for classification problem using tensorflow and keras libraries. We will try to learn how to build a nerual netwroks model Read more…

## NLP Tutorial – Spam Text Message Classification using NLP

Spam Ham text classification Watch Full Video Here Objective Our objective of this code is to classify texts into two classes spam and ham. What is Natural Language Processing Natural Language Processing (NLP) is the field of Artificial Intelligence, where we analyse text using machine learning models Application of NLP Read more…

## Google Stock Price Prediction using RNN – LSTM

Prediction of Google Stock Price using RNN In this we are going to predict the opening price of the stock given the highest, lowest and closing price for that particular day by using RNN-LSTM. Ref- https://colah.github.io/posts/2015-08-Understanding-LSTMs/ What is RNN? Recurrent Neural Networks are the first of its kind State of the Read more…

## Feature Selection Based on Univariate ROC_AUC for Classification and MSE for Regression | Machine Learning | KGP talkie

Feature Selection Based on Univariate ROC_AUC for Classification and MSE for Regression Watch Full Playlist: https://www.youtube.com/playlist?list=PLc2rvfiptPSQYzmDIFuq2PqN2n28ZjxDH What is ROC_AUC The Receiver Operator Characteristic (ROC) curve is well-known in evaluating classification performance. Owing to its superiority in dealing with imbalanced and cost-sensitive data, the ROC curve has been exploited as a Read more…

## Feature Selection using Fisher Score and Chi2 (χ2) Test | Titanic Dataset | Machine Learning | KGP Talkie

Feature Selection using Fisher Score and Chi2 (χ2) Test Watch Full Playlist: https://www.youtube.com/playlist?list=PLc2rvfiptPSQYzmDIFuq2PqN2n28ZjxDH What is Fisher Score and Chi2 ( χ2) Test Fisher score is one of the most widely used supervised feature selection methods. However, it selects each feature independently according to their scores under the Fisher criterion, which Read more…

## Feature Selection Based on Univariate (ANOVA) Test for Classification | Machine Learning | KGP Talkie

Feature Selection Based on Univariate (ANOVA) Test for Classification Watch Full Playlist: https://www.youtube.com/playlist?list=PLc2rvfiptPSQYzmDIFuq2PqN2n28ZjxDH What is Univariate (ANOVA) Test The elimination process aims to reduce the size of the input feature set and at the same time to retain the class discriminatory information for classification problems. An F-test is any statistical Read more…

## Feature Selection Based on Mutual Information (Entropy) Gain for Classification and Regression | Machine Learning | KGP Talkie

Feature Selection Based on Mutual Information (Entropy) Gain Watch Full Playlist: https://www.youtube.com/playlist?list=PLc2rvfiptPSQYzmDIFuq2PqN2n28ZjxDH What is Mutual Information The elimination process aims to reduce the size of the input feature set and at the same time to retain the class discriminatory information for classification problems. Mutual information (MI) is a measure of Read more…

## Feature Selection with Filtering Method | Constant, Quasi Constant and Duplicate Feature Removal

Filtering method Watch Full Playlist: https://www.youtube.com/playlist?list=PLc2rvfiptPSQYzmDIFuq2PqN2n28ZjxDH Unnecessary and redundant features not only slow down the training time of an algorithm, but they also affect the performance of the algorithm. There are several advantages of performing feature selection before training machine learning models: Models with less number of features have higher Read more…

## Feature Dimention Reduction Using LDA and PCA with Python | Principal Component Analysis in Feature Selection | KGP Talkie

Feature Dimension Reduction Watch Full Playlist: https://www.youtube.com/playlist?list=PLc2rvfiptPSQYzmDIFuq2PqN2n28ZjxDH What is LDA (Linear Discriminant Analysis)? The idea behind LDA is simple. Mathematically speaking, we need to find a new feature space to project the data in order to maximize classes separability Linear Discriminant Analysis is a supervised algorithm as it takes the Read more…