Complete Seaborn Python Tutorial for Data Visualization in Python

Visualizing statistical relationships Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. Statistical analysis is a process of understanding how variables in a dataset relate to each other and how those relationships depend on other variables. Visualization Read more…

Feature Selection using Fisher Score and Chi2 (χ2) Test | Titanic Dataset | Machine Learning | KGP Talkie

Feature Selection using Fisher Score and Chi2 (χ2) Test Watch Full Playlist: https://www.youtube.com/playlist?list=PLc2rvfiptPSQYzmDIFuq2PqN2n28ZjxDH What is Fisher Score and Chi2 ( χ2) Test Fisher score is one of the most widely used supervised feature selection methods. However, it selects each feature independently according to their scores under the Fisher criterion, which Read more…

Feature Selection Based on Univariate (ANOVA) Test for Classification | Machine Learning | KGP Talkie

Feature Selection Based on Univariate (ANOVA) Test for Classification Watch Full Playlist: https://www.youtube.com/playlist?list=PLc2rvfiptPSQYzmDIFuq2PqN2n28ZjxDH What is Univariate (ANOVA) Test The elimination process aims to reduce the size of the input feature set and at the same time to retain the class discriminatory information for classification problems. An F-test is any statistical Read more…

Feature Selection Based on Mutual Information (Entropy) Gain for Classification and Regression | Machine Learning | KGP Talkie

Feature Selection Based on Mutual Information (Entropy) Gain Watch Full Playlist: https://www.youtube.com/playlist?list=PLc2rvfiptPSQYzmDIFuq2PqN2n28ZjxDH What is Mutual Information The elimination process aims to reduce the size of the input feature set and at the same time to retain the class discriminatory information for classification problems. Mutual information (MI) is a measure of Read more…

Feature Selection with Filtering Method | Constant, Quasi Constant and Duplicate Feature Removal

Filtering method Watch Full Playlist: https://www.youtube.com/playlist?list=PLc2rvfiptPSQYzmDIFuq2PqN2n28ZjxDH Unnecessary and redundant features not only slow down the training time of an algorithm, but they also affect the performance of the algorithm. There are several advantages of performing feature selection before training machine learning models: Models with less number of features have higher Read more…

Recursive Feature Elimination (RFE) by Using Tree Based and Gradient Based Estimators | Machine Learning | KGP Talkie

Recursive Feature Elimination (RFE) Playlist: https://www.youtube.com/playlist?list=PLc2rvfiptPSQYzmDIFuq2PqN2n28ZjxDH As it’s name suggests, it eliminates the features recursively and build a model using remaining attributes then again calculates the model accuracy of the model..Moreover how it do it train the model on all the dataset and it tries to remove the least performing Read more…

PCA with Python | Principal Component Analysis Machine Learning | KGP Talkie

Principal Component Analysis(PCA) According to Wikipedia, PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables (entities each of which takes on various numerical values) into a set of values of linearly uncorrelated variables called principal components. Principal components These Read more…

K-Mean Clustering in Python | Machine Learning | KGP Talkie

What is K-Mean Clustering? Machine Learning can broadly be classified into three types: Supervised Learning Unsupervised Learning Semi-supervised Learning K-means algorithm identifies k number of centroids, and then allocates every data point to the nearest cluster, while keeping the centroids as small as possible. The ‘means’ in the K-means refers Read more…

Random Forest Classifier and Regressor with python | Machine Learning | KGP Talkie

What is it? A Random Forest is an ensemble technique which can have capable of performing both regression and classification tasks with the use of multiple decision trees and a technique called Bootstrap and Aggregation, commonly known as bagging. The basic idea behind this is to combine multiple decision trees Read more…