NLP: End to End Text Processing for Beginners

Complete Text Processing for Beginners Everything we express (either verbally or in written) carries huge amounts of information. The topic we choose, our tone, our selection of words, everything adds some type of information that can be interpreted and value can be extracted from it. In theory, we can understand Read more…

Words Embedding using GloVe Vectors

NLP Tutorial – GloVe Vectors Embedding with TF2.0 and Keras GloVe stands for global vectors for word representation. It is an unsupervised learning algorithm developed by Stanford for generating word embeddings by aggregating a global word-word co-occurrence matrix from a corpus. The resulting embeddings show interesting linear substructures of the word in Read more…

Multi-step-Time-series-predicting using RNN LSTM

Household Power Consumption Prediction using RNN-LSTM Power outage accidents will cause huge economic loss to the social economy. Therefore, it is very important to predict power consumption. Given the rise of smart electricity meters and the wide adoption of electricity generation technology like solar panels, there is a wealth of Read more…

Sentiment Analysis Using Scikit-learn

Sentiment Analysis Objective In this notebook we are going to perform a binary classification i.e. we will classify the sentiment as positive or negative according to the `Reviews’ column data of the IMDB dataset.  We will use TFIDF for text data vectorization and Linear Support Vector Machine for classification. Natural Read more…

Feature Dimention Reduction Using LDA and PCA with Python | Principal Component Analysis in Feature Selection | KGP Talkie

Feature Dimension Reduction Watch Full Playlist: https://www.youtube.com/playlist?list=PLc2rvfiptPSQYzmDIFuq2PqN2n28ZjxDH What is LDA (Linear Discriminant Analysis)? The idea behind LDA is simple. Mathematically speaking, we need to find a new feature space to project the data in order to maximize classes separability Linear Discriminant Analysis is a supervised algorithm as it takes the Read more…

Use of Linear and Logistic Regression Coefficients with Lasso (L1) and Ridge (L2) Regularization for Feature Selection in Machine Learning

Watch Full Playlist: https://www.youtube.com/playlist?list=PLc2rvfiptPSQYzmDIFuq2PqN2n28ZjxDH Linear Regression Let’s first understand what exactly linear regression is, it is a straight forward approach to predict the response y on the basis of different prediction variables such x and ε. . There is a linear relation between x and y. 𝑦𝑖 = 𝛽0 + Read more…

Recursive Feature Elimination (RFE) by Using Tree Based and Gradient Based Estimators | Machine Learning | KGP Talkie

Recursive Feature Elimination (RFE) Playlist: https://www.youtube.com/playlist?list=PLc2rvfiptPSQYzmDIFuq2PqN2n28ZjxDH As it’s name suggests, it eliminates the features recursively and build a model using remaining attributes then again calculates the model accuracy of the model..Moreover how it do it train the model on all the dataset and it tries to remove the least performing Read more…

Lasso and Ridge Regularisation for Feature Selection in Classification | Embedded Method | KGP Talkie

What is Regularisation? Regularization adds a penalty on the different parameters of the model to reduce the freedom of the model. Hence, the model will be less likely to fit the noise of the training data and will improve the generalization abilities of the model. There are basically 3-types of Read more…

PCA with Python | Principal Component Analysis Machine Learning | KGP Talkie

Principal Component Analysis(PCA) According to Wikipedia, PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables (entities each of which takes on various numerical values) into a set of values of linearly uncorrelated variables called principal components. Principal components These Read more…

K-Mean Clustering in Python | Machine Learning | KGP Talkie

What is K-Mean Clustering? Machine Learning can broadly be classified into three types: Supervised Learning Unsupervised Learning Semi-supervised Learning K-means algorithm identifies k number of centroids, and then allocates every data point to the nearest cluster, while keeping the centroids as small as possible. The ‘means’ in the K-means refers Read more…